cidr_map/
map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
// The heart of this CidrMap implementation is derived from rust-bitstring-trees
// which is Copyright (c) 2017 Stefan Bühler and used here under the terms
// of its MIT License.
// The modifications made here are to remove the use of unsafe code and to
// expose the ability to search, rather than simply iterate, the underlying
// radix tree.
use bitstring::BitString;
pub use cidr::{AnyIpCidr, IpCidr};
#[cfg(feature = "lua")]
use config::{any_err, get_or_create_sub_module};
#[cfg(feature = "lua")]
use mlua::prelude::LuaUserData;
#[cfg(feature = "lua")]
use mlua::{FromLua, Lua, MetaMethod, UserDataMethods};
#[cfg(feature = "lua")]
use mod_memoize::CacheValue;
use std::fmt::Debug;
use std::net::IpAddr;
use std::str::FromStr;

#[derive(Clone, PartialEq)]
pub struct CidrMap<V>
where
    V: Clone,
{
    root: Option<Node<V>>,
}

impl<V> Debug for CidrMap<V>
where
    V: Clone + Debug,
{
    fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
        use std::fmt::DebugMap;
        let mut map = fmt.debug_map();

        fn walk<V: Clone + Debug>(node: &Node<V>, map: &mut DebugMap) {
            match node {
                Node::InnerNode(inner) => {
                    walk(&inner.children.left, map);
                    walk(&inner.children.right, map);
                }
                Node::Leaf(leaf) => {
                    map.key(&leaf.key.to_string());
                    map.value(&leaf.value);
                }
            }
        }

        if let Some(root) = &self.root {
            walk(root, &mut map);
        }

        map.finish()
    }
}

/// Nodes of a CidrMap can be either an InnerNode (with two children)
/// or a leaf node.
#[derive(Debug, Clone, PartialEq)]
pub enum Node<V>
where
    V: Clone,
{
    /// Inner node
    InnerNode(InnerNode<V>),
    /// Leaf node
    Leaf(Leaf<V>),
}

/// Leaf nodes represent prefixes part of the set
#[derive(Clone, Debug, PartialEq)]
pub struct Leaf<V>
where
    V: Clone,
{
    pub key: AnyIpCidr,
    pub value: V,
}

/// Inner node with two direct children.
#[derive(Clone, Debug, PartialEq)]
pub struct InnerNode<V>
where
    V: Clone,
{
    pub(crate) key: AnyIpCidr,
    pub(crate) children: Box<Children<V>>,
}

#[derive(Clone, Debug, PartialEq)]
pub(crate) struct Children<V>
where
    V: Clone,
{
    pub(crate) left: Node<V>,
    pub(crate) right: Node<V>,
}

impl<V> InnerNode<V>
where
    V: Clone,
{
    pub fn key(&self) -> &AnyIpCidr {
        &self.key
    }

    pub fn pick_side<'a>(&'a self, subkey: &AnyIpCidr) -> &'a Node<V> {
        if subkey.get(self.key.len()) {
            &self.children.right
        } else {
            &self.children.left
        }
    }

    pub fn pick_side_mut<'a>(&'a mut self, subkey: &AnyIpCidr) -> &'a mut Node<V> {
        if subkey.get(self.key.len()) {
            &mut self.children.right
        } else {
            &mut self.children.left
        }
    }

    pub fn left(&self) -> &Node<V> {
        &self.children.left
    }

    pub fn right(&self) -> &Node<V> {
        &self.children.right
    }
}

impl<V> Node<V>
where
    V: Clone,
{
    fn new_leaf(key: AnyIpCidr, value: V) -> Self {
        Self::Leaf(Leaf { key, value })
    }

    fn new_children_unknown_order(
        shared_prefix_len: usize,
        a: Node<V>,
        b: Node<V>,
    ) -> Box<Children<V>> {
        let a_right = a.key().get(shared_prefix_len);
        assert_eq!(!a_right, b.key().get(shared_prefix_len));
        if a_right {
            Box::new(Children { left: b, right: a })
        } else {
            Box::new(Children { left: a, right: b })
        }
    }

    fn new_inner_unknown_order(shared_prefix_len: usize, a: Node<V>, b: Node<V>) -> Node<V> {
        let mut key = a.key().clone();
        key.clip(shared_prefix_len);
        Node::InnerNode(InnerNode {
            key,
            children: Self::new_children_unknown_order(shared_prefix_len, a, b),
        })
    }

    /// The longest shared prefix of all nodes in this sub tree.
    pub fn key(&self) -> &AnyIpCidr {
        match *self {
            Node::Leaf(ref leaf) => &leaf.key,
            Node::InnerNode(ref inner) => &inner.key,
        }
    }

    fn leaf_ref(&self) -> Option<&Leaf<V>> {
        match *self {
            Node::Leaf(ref leaf) => Some(leaf),
            _ => None,
        }
    }

    /// convert self node to leaf with key clipped to key_len and given
    /// value
    fn convert_leaf(&mut self, key_len: usize, value: V) {
        *self = match self {
            Node::Leaf(leaf) => {
                let mut leaf = leaf.clone();
                leaf.key.clip(key_len);
                leaf.value = value;
                Node::Leaf(leaf)
            }
            Node::InnerNode(inner) => {
                let mut key = inner.key;
                key.clip(key_len);
                Self::new_leaf(key, value)
            }
        };
    }

    fn insert_uncompressed(&mut self, key: AnyIpCidr, value: V)
    where
        V: Clone,
    {
        let (self_key_len, shared_prefix_len) = {
            let key_ref = self.key();
            (key_ref.len(), key_ref.shared_prefix_len(&key))
        };

        if shared_prefix_len == key.len() {
            // either key == self.key, or key is a prefix of self.key
            // => replace subtree
            self.convert_leaf(shared_prefix_len, value);
        } else if shared_prefix_len < self_key_len {
            debug_assert!(shared_prefix_len < key.len());
            // need to split path to current node; requires new parent
            *self = Self::new_inner_unknown_order(
                shared_prefix_len,
                self.clone(),
                Self::new_leaf(key, value),
            );
        } else {
            debug_assert!(shared_prefix_len == self_key_len);
            debug_assert!(shared_prefix_len < key.len());
            // new key below in tree
            match *self {
                Node::Leaf(_) => {
                    // linear split of path down to leaf
                    let old_value = self.leaf_ref().unwrap().value.clone();
                    let mut new_node = Self::new_leaf(key.clone(), value);
                    for l in (shared_prefix_len..key.len()).rev() {
                        let mut other_key = key.clone();
                        other_key.clip(l + 1);
                        other_key.flip(l);
                        new_node = Self::new_inner_unknown_order(
                            l,
                            new_node,
                            Self::new_leaf(other_key, old_value.clone()),
                        );
                    }
                    *self = new_node;
                }
                Node::InnerNode(ref mut inner) => {
                    inner.pick_side_mut(&key).insert_uncompressed(key, value);
                }
            }
        }
    }

    fn insert(&mut self, key: AnyIpCidr, value: V)
    where
        V: Clone + PartialEq,
    {
        let (self_key_len, shared_prefix_len) = {
            let key_ref = self.key();
            (key_ref.len(), key_ref.shared_prefix_len(&key))
        };

        if shared_prefix_len == key.len() {
            // either key == self.key, or key is a prefix of self.key
            // => replace subtree
            self.convert_leaf(shared_prefix_len, value);
        // no need to compress
        } else if shared_prefix_len < self_key_len {
            debug_assert!(shared_prefix_len < key.len());
            if shared_prefix_len + 1 == self_key_len && shared_prefix_len + 1 == key.len() {
                if let Node::Leaf(ref mut this) = *self {
                    if this.value == value {
                        // we'd split this, and compress it below.
                        // shortcut the allocations here
                        this.key.clip(shared_prefix_len);
                        return; // no need split path
                    }
                }
            }

            // need to split path to current node; requires new parent
            *self = Self::new_inner_unknown_order(
                shared_prefix_len,
                self.clone(),
                Self::new_leaf(key, value),
            );
        // no need to compress - shortcut check above would
        // have found it
        } else {
            debug_assert!(shared_prefix_len == self_key_len);
            debug_assert!(shared_prefix_len < key.len());
            // new key below in tree
            match *self {
                Node::Leaf(_) => {
                    // linear split of path down to leaf
                    let new_node = {
                        let old_value = &self.leaf_ref().unwrap().value;
                        if *old_value == value {
                            // below in tree, but same value - nothing new
                            return;
                        }
                        let mut new_node = Self::new_leaf(key.clone(), value);
                        for l in (shared_prefix_len..key.len()).rev() {
                            let mut other_key = key.clone();
                            other_key.clip(l + 1);
                            other_key.flip(l);
                            new_node = Self::new_inner_unknown_order(
                                l,
                                new_node,
                                Self::new_leaf(other_key, old_value.clone()),
                            );
                        }
                        new_node
                    };
                    *self = new_node;
                    // we checked value before, nothing to compress
                    return;
                }
                Node::InnerNode(ref mut inner) => {
                    inner.pick_side_mut(&key).insert(key, value);
                }
            }
            // after recursion check for compression
            self.compress();
        }
    }

    fn compress(&mut self)
    where
        V: PartialEq,
    {
        let self_key_len = self.key().len();

        // compress: if node has two children, and both sub keys are
        // exactly one bit longer than the key of the parent node, and
        // both child nodes are leafs and share the same value, make the
        // current node a leaf
        let compress = match *self {
            Node::InnerNode(ref inner) => {
                let left_value = match inner.children.left {
                    Node::Leaf(ref leaf) if leaf.key.len() == self_key_len + 1 => &leaf.value,
                    _ => return, // not a leaf or more than one bit longer
                };
                let right_value = match inner.children.right {
                    Node::Leaf(ref leaf) if leaf.key.len() == self_key_len + 1 => &leaf.value,
                    _ => return, // not a leaf or more than one bit longer
                };
                left_value == right_value
            }
            Node::Leaf(_) => return, // already compressed
        };
        if compress {
            *self = match self {
                // move value from left
                Node::InnerNode(inner) => match &inner.children.left {
                    Node::Leaf(leaf) => Node::Leaf(Leaf {
                        key: inner.key.clone(),
                        value: leaf.value.clone(),
                    }),
                    _ => unreachable!(),
                },
                _ => unreachable!(),
            };
        }
    }
}

impl<V> Default for CidrMap<V>
where
    V: Clone,
{
    fn default() -> Self {
        Self { root: None }
    }
}

impl<V> CidrMap<V>
where
    V: Clone,
{
    pub fn new() -> Self {
        Self { root: None }
    }

    pub fn contains(&self, ip: IpAddr) -> bool {
        self.get_prefix_match(ip).is_some()
    }

    pub fn get_prefix_match(&self, ip: IpAddr) -> Option<&V> {
        let key: AnyIpCidr = IpCidr::new_host(ip).into();
        self.get_prefix_match_cidr(&key)
    }

    pub fn get_prefix_match_cidr(&self, key: &AnyIpCidr) -> Option<&V> {
        let node = self.root.as_ref()?;
        Self::find_item(node, &key)
    }

    fn find_item<'a>(node: &'a Node<V>, ip: &AnyIpCidr) -> Option<&'a V> {
        match node {
            Node::Leaf(leaf) => {
                if leaf.key.contains(&ip.first_address().unwrap()) {
                    Some(&leaf.value)
                } else {
                    None
                }
            }
            Node::InnerNode(inner) => Self::find_item(inner.pick_side(&ip), ip),
        }
    }

    /// Add a new prefix => value mapping.
    ///
    /// As values can't be compared for equality it cannot merge
    /// neighbour prefixes that map to the same value.
    pub fn insert_uncompressed(&mut self, key: AnyIpCidr, value: V)
    where
        V: Clone,
    {
        match self.root {
            None => {
                self.root = Some(Node::new_leaf(key, value));
            }
            Some(ref mut node) => {
                node.insert_uncompressed(key, value);
            }
        }
    }

    /// Add a new prefix => value mapping.  (Partially) overwrites old
    /// mappings.
    pub fn insert(&mut self, key: AnyIpCidr, value: V)
    where
        V: Clone + PartialEq,
    {
        match self.root {
            None => {
                self.root = Some(Node::new_leaf(key, value));
            }
            Some(ref mut node) => {
                node.insert(key, value);
            }
        }
    }

    /// Read-only access to the tree.
    ///
    /// An empty map doesn't have any nodes (i.e. `None`).
    pub fn root(&self) -> Option<&Node<V>> {
        self.root.as_ref()
    }

    /// Iterate over all values in the map
    pub fn iter(&self) -> Iter<V> {
        Iter::new(self)
    }
}

#[derive(Clone, Copy, PartialEq, Eq)]
enum Direction {
    Left,
    Right,
    Up,
}

/// Iterate over tree
pub struct Iter<'a, V: 'a>
where
    V: Clone,
{
    stack: Vec<(Direction, &'a Node<V>)>,
}

impl<'a, V> Iter<'a, V>
where
    V: Clone,
{
    /// new iterator
    pub fn new(tree: &'a CidrMap<V>) -> Self {
        match tree.root() {
            None => Iter { stack: Vec::new() },
            Some(node) => Iter {
                stack: vec![(Direction::Left, node)],
            },
        }
    }
}

impl<'a, V> Iterator for Iter<'a, V>
where
    V: Clone,
{
    type Item = (&'a AnyIpCidr, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        if self.stack.is_empty() {
            return None;
        }

        // go up in tree from last visited node
        while Direction::Up == self.stack[self.stack.len() - 1].0 {
            if 1 == self.stack.len() {
                self.stack.clear();
                return None;
            }

            self.stack.pop();
            // stack cannot be empty yet!
            debug_assert!(!self.stack.is_empty());
        }

        loop {
            let top = self.stack.len() - 1;
            let (dir, node) = self.stack[top];

            debug_assert!(!self.stack.is_empty());
            // go down in tree to next node
            match dir {
                Direction::Left => match *node {
                    Node::InnerNode(ref inner) => {
                        self.stack[top].0 = Direction::Right;
                        self.stack.push((Direction::Left, inner.left()));
                    }
                    Node::Leaf(ref leaf) => {
                        self.stack[top].0 = Direction::Up;
                        return Some((&leaf.key, &leaf.value));
                    }
                },
                Direction::Right => match *node {
                    Node::InnerNode(ref inner) => {
                        self.stack[top].0 = Direction::Up;
                        self.stack.push((Direction::Left, inner.right()));
                    }
                    Node::Leaf(_) => unreachable!(),
                },
                Direction::Up => unreachable!(),
            }
        }
    }
}

impl<S, V: Clone + Eq> FromIterator<(S, V)> for CidrMap<V>
where
    S: Into<AnyIpCidr>,
{
    fn from_iter<I: IntoIterator<Item = (S, V)>>(iter: I) -> Self {
        let mut map = CidrMap::new();
        for (key, value) in iter {
            map.insert(key.into(), value);
        }
        map
    }
}

impl<T: Ord + Into<AnyIpCidr>, const N: usize, V: Clone + Ord> From<[(T, V); N]> for CidrMap<V> {
    /// Converts a `[(T,V); N]` into a `CidrSet`.
    fn from(mut arr: [(T, V); N]) -> Self {
        if N == 0 {
            return CidrMap::new();
        }

        // use stable sort to preserve the insertion order.
        arr.sort();
        let iter = IntoIterator::into_iter(arr).map(|k| k);
        iter.collect()
    }
}

impl<V: Clone> Into<Vec<(AnyIpCidr, V)>> for CidrMap<V> {
    fn into(self) -> Vec<(AnyIpCidr, V)> {
        let mut result = vec![];
        for (key, value) in self.iter() {
            result.push((key.clone(), value.clone()));
        }
        result
    }
}

#[cfg(feature = "lua")]
impl LuaUserData for CidrMap<CacheValue> {
    fn add_methods<M: UserDataMethods<Self>>(methods: &mut M) {
        mod_memoize::Memoized::impl_memoize(methods);
        methods.add_meta_method(MetaMethod::Index, |lua, this, key: String| {
            let key = parse_cidr_from_ip_and_or_port(&key).map_err(any_err)?;
            if let Some(value) = this.get_prefix_match_cidr(&key) {
                let value = value.as_lua(lua)?;
                Ok(Some(value))
            } else {
                Ok(None)
            }
        });
        methods.add_meta_method_mut(
            MetaMethod::NewIndex,
            |lua, this, (key, value): (String, mlua::Value)| {
                let key = parse_cidr_from_ip_and_or_port(&key).map_err(any_err)?;
                let value = CacheValue::from_lua(value, lua)?;
                this.insert(key, value);
                Ok(())
            },
        );
    }
}

#[cfg(feature = "lua")]
fn parse_cidr_from_ip_and_or_port(s: &str) -> anyhow::Result<AnyIpCidr> {
    match parse_cidr(s) {
        Ok(c) => Ok(c),
        Err(err) => {
            if s.starts_with('[') {
                if let Some((ip, _port)) = s[1..].split_once(']') {
                    return parse_cidr(ip).map_err(|err| {
                        anyhow::anyhow!(
                            "failed to parse '{ip}', the \
                             []-enclosed portion of '{s}', as an IP address: {err:#}"
                        )
                    });
                }
            }
            if let Some((ip, _port)) = s.rsplit_once(':') {
                return parse_cidr(ip).map_err(|err| {
                    anyhow::anyhow!(
                        "failed to parse '{ip}', the \
                         :-delimited portion of '{s}', as an IP address: {err:#}"
                    )
                });
            }
            Err(err)
        }
    }
}

/// The underlying AnyIpCidr::from_str parser is very strict and its error messages
/// are a little too terse.
/// We use this alternative parser to augment the error messages with more context
/// and suggestions.
// <https://github.com/stbuehler/rust-cidr/issues/8>
pub fn parse_cidr(s: &str) -> anyhow::Result<AnyIpCidr> {
    AnyIpCidr::from_str(s).map_err(|err| {
        match cidr::parsers::parse_any_cidr_full_ignore_hostbits(
            s,
            std::str::FromStr::from_str,
            std::str::FromStr::from_str,
        ) {
            Ok(loose) => {
                anyhow::anyhow!("{s} is not a valid CIDR: {err:#}. Did you mean {loose}?")
            }
            Err(err) => {
                anyhow::anyhow!("{s} is not a valid CIDR: {err:#}")
            }
        }
    })
}

#[cfg(feature = "lua")]
pub fn register(lua: &Lua) -> anyhow::Result<()> {
    use std::collections::HashMap;
    let cidr_mod = get_or_create_sub_module(lua, "cidr")?;

    cidr_mod.set(
        "make_map",
        lua.create_function(|lua, value: Option<HashMap<String, mlua::Value>>| {
            let mut cmap: CidrMap<mod_memoize::CacheValue> = CidrMap::new();

            if let Some(value) = value {
                for (k, v) in value {
                    let k = parse_cidr_from_ip_and_or_port(&k).map_err(any_err)?;
                    let v = CacheValue::from_lua(v, lua)?;
                    cmap.insert(k, v);
                }
            }

            Ok(cmap)
        })?,
    )?;

    Ok(())
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_parse_error_message() {
        assert_eq!(
            parse_cidr("10.0.0.1/24").unwrap_err().to_string(),
            "10.0.0.1/24 is not a valid CIDR: host part of address was not zero. Did you mean 10.0.0.0/24?"
        );
    }

    #[test]
    fn cidrmap() {
        let set: CidrMap<&str> = [
            (parse_cidr("127.0.0.1").unwrap(), "loopbackv4"),
            (parse_cidr("::1").unwrap(), "loopbackv6"),
            (parse_cidr("192.168.1.0/24").unwrap(), ".1"),
            // This entry is overlapped by the preceding entry
            (parse_cidr("192.168.1.24").unwrap(), ".1"),
            (parse_cidr("192.168.3.0/28").unwrap(), ".3"),
            (parse_cidr("192.168.3.2").unwrap(), ".3.split"),
            (parse_cidr("10.0.3.0/24").unwrap(), "10.3"),
            (parse_cidr("10.0.4.0/24").unwrap(), "10.4"),
            (parse_cidr("10.0.7.0/24").unwrap(), "10.7"),
        ]
        .into();

        fn get<'a>(set: &'a CidrMap<&str>, key: &str) -> Option<&'a str> {
            let key = key.parse().unwrap();
            set.get_prefix_match(key).copied()
        }

        assert_eq!(get(&set, "127.0.0.1"), Some("loopbackv4"));
        assert_eq!(get(&set, "127.0.0.2"), None);
        assert_eq!(get(&set, "::1"), Some("loopbackv6"));

        assert_eq!(get(&set, "192.168.2.1"), None);

        assert_eq!(get(&set, "192.168.1.0"), Some(".1"));
        assert_eq!(get(&set, "192.168.1.1"), Some(".1"));
        assert_eq!(get(&set, "192.168.1.100"), Some(".1"));
        assert_eq!(get(&set, "192.168.1.24"), Some(".1"));

        assert_eq!(get(&set, "192.168.3.0"), Some(".3"));
        assert_eq!(get(&set, "192.168.3.16"), None);
        assert_eq!(get(&set, "192.168.3.2"), Some(".3.split"));

        // Note that the snapshot does not contain 192.168.1.24/32; that
        // overlaps with the broader 192.168.1.0/24 so is "lost"
        // when extracting the information from the set.
        // Furthermore, the .3.split value inserted for .3.2
        // causes more .3 entries to be generated to accomodate the
        // split in that subnet.
        k9::snapshot!(
            &set,
            r#"
{
    "10.0.3.0/24": "10.3",
    "10.0.4.0/24": "10.4",
    "10.0.7.0/24": "10.7",
    "127.0.0.1": "loopbackv4",
    "192.168.1.0/24": ".1",
    "192.168.3.0/31": ".3",
    "192.168.3.2": ".3.split",
    "192.168.3.3": ".3",
    "192.168.3.4/30": ".3",
    "192.168.3.8/29": ".3",
    "::1": "loopbackv6",
}
"#
        );
    }
}