kumo_server_memory/
tracking.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
use crate::{NumBytes, Number};
use backtrace::Backtrace;
use parking_lot::Mutex;
use std::alloc::{GlobalAlloc, Layout};
use std::cell::Cell;
use std::collections::HashMap;
use std::sync::atomic::Ordering::Relaxed;
use std::sync::atomic::{AtomicBool, AtomicUsize};
use std::sync::LazyLock;

// Portions of this file are derived from the re_memory crate
// which is Copyright (c) 2022 Rerun Technologies AB <opensource@rerun.io>
// and used under the terms of its MIT License
// <https://github.com/rerun-io/rerun/tree/main/crates/utils/re_memory>

thread_local! {
    static IN_TRACKER: Cell<bool> = const { Cell::new(false) };
}

#[derive(Default)]
pub struct TrackingAllocator<A: GlobalAlloc> {
    allocator: A,
}

impl<A: GlobalAlloc> TrackingAllocator<A> {
    pub const fn new(allocator: A) -> Self {
        Self { allocator }
    }
}

static STATS: Stats = Stats::new();

const SMALL_SIZE: usize = 128;
const MEDIUM_SIZE: usize = 4 * 1024;

const MEDIUM_RATE: u64 = 64;
const BIG_RATE: u64 = 1;

static BIG_TRACKER: LazyLock<Mutex<AllocationTracker>> =
    LazyLock::new(|| Mutex::new(AllocationTracker::default()));
static MEDIUM_TRACKER: LazyLock<Mutex<AllocationTracker>> =
    LazyLock::new(|| Mutex::new(AllocationTracker::default()));

// SAFETY: we're passing through the unsafe portions to an underlying
// allocator, which we're relying on to uphold safety.
// The additional logic we add here is safe and is merely tracking
unsafe impl<A: GlobalAlloc> GlobalAlloc for TrackingAllocator<A> {
    unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
        let ptr = unsafe { self.allocator.alloc(layout) };
        track_allocation(ptr, layout.size());
        ptr
    }

    unsafe fn alloc_zeroed(&self, layout: Layout) -> *mut u8 {
        let ptr = unsafe { self.allocator.alloc_zeroed(layout) };
        track_allocation(ptr, layout.size());
        ptr
    }

    unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
        unsafe { self.allocator.dealloc(ptr, layout) };
        track_dealloc(ptr, layout.size());
    }

    unsafe fn realloc(&self, old_ptr: *mut u8, layout: Layout, new_size: usize) -> *mut u8 {
        track_dealloc(old_ptr, layout.size());

        let new_ptr = unsafe { self.allocator.realloc(old_ptr, layout, new_size) };

        track_allocation(new_ptr, new_size);
        new_ptr
    }
}

fn track_allocation(ptr: *mut u8, size: usize) {
    STATS.live.add(size);

    if !STATS.track_callstacks.load(Relaxed) {
        return;
    }

    if size < SMALL_SIZE {
        STATS.small.add(size);
        return;
    }

    IN_TRACKER.with(|in_track| {
        if !in_track.get() {
            in_track.set(true);

            let hash = PtrHash::new(ptr);
            let track = hash.should_sample_size(size);

            if track {
                let bt = Backtrace::new_unresolved();
                if size < MEDIUM_SIZE {
                    STATS.medium.add(size);
                    MEDIUM_TRACKER.lock().track_allocation(hash, size, bt);
                } else {
                    STATS.large.add(size);
                    BIG_TRACKER.lock().track_allocation(hash, size, bt);
                }
            }

            in_track.set(false);
        }
    });
}

fn track_dealloc(ptr: *mut u8, size: usize) {
    STATS.live.sub(size);

    if !STATS.track_callstacks.load(Relaxed) {
        return;
    }

    if size < SMALL_SIZE {
        STATS.small.sub(size);
        return;
    }

    IN_TRACKER.with(|in_track| {
        if !in_track.get() {
            in_track.set(true);

            let hash = PtrHash::new(ptr);
            let track = hash.should_sample_size(size);

            if track {
                if size < MEDIUM_SIZE {
                    MEDIUM_TRACKER.lock().track_dealloc(hash, size);
                    STATS.medium.sub(size);
                } else {
                    STATS.large.sub(size);
                    BIG_TRACKER.lock().track_dealloc(hash, size);
                }
            }

            in_track.set(false);
        }
    });
}

/// Returns the stochastic sampling rate (really, an interval)
/// that should be used for a given allocation size.
fn stochastic_rate_by_size(size: usize) -> u64 {
    if size < MEDIUM_SIZE {
        MEDIUM_RATE
    } else {
        BIG_RATE
    }
}

/// Given a pointer address, hash it into a 64-bit hash value.
/// The hash re-distributes the bits which is important for
/// the stochastic sampling approach used in this module.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq)]
struct PtrHash(u64);

impl PtrHash {
    #[inline]
    pub fn new(ptr: *mut u8) -> Self {
        Self(ahash::RandomState::with_seeds(1, 2, 3, 4).hash_one(ptr))
    }

    /// Given an allocation size, returns true if we should sample
    /// the associated allocation call stack based on the stochastic
    /// rate configured for that allocation size.
    pub fn should_sample_size(&self, size: usize) -> bool {
        let rate = stochastic_rate_by_size(size);
        self.should_sample_at_rate(rate)
    }

    /// Apply "stochastic sampling" at a specified "rate".
    /// The rate is nominally a sampling interval.
    /// The redistribution of the address bits by the hash
    /// "randomizes" the bits and the rate/interval is used
    /// as a mask
    pub fn should_sample_at_rate(&self, rate: u64) -> bool {
        self.0 & (rate - 1) == 0
    }
}

struct CallstackEntry {
    size: usize,
    bt: Backtrace,
}

pub struct CallstackStats {
    pub count: usize,
    pub total_size: usize,
    pub bt: Backtrace,
    pub stochastic_rate: usize,
}

#[derive(Default)]
struct AllocationTracker {
    live_allocations: ahash::HashMap<PtrHash, CallstackEntry>,
}

impl AllocationTracker {
    pub fn track_allocation(&mut self, ptr: PtrHash, size: usize, bt: Backtrace) {
        self.live_allocations
            .insert(ptr, CallstackEntry { size, bt });
    }

    pub fn track_dealloc(&mut self, ptr: PtrHash, _size: usize) {
        self.live_allocations.remove(&ptr);
    }

    pub fn top_callstacks(&self, max_stacks: usize) -> Vec<CallstackStats> {
        let mut by_stack = HashMap::new();

        for alloc in self.live_allocations.values() {
            let key = alloc.bt.frames().iter().map(|f| f.ip()).collect::<Vec<_>>();
            let entry = by_stack.entry(key).or_insert_with(|| CallstackStats {
                count: 0,
                total_size: 0,
                bt: alloc.bt.clone(),
                stochastic_rate: stochastic_rate_by_size(alloc.size) as usize,
            });

            entry.count += 1;
            entry.total_size += alloc.size;
        }

        let mut stats = by_stack
            .into_iter()
            .map(|(_, stats)| stats)
            .collect::<Vec<_>>();
        stats.sort_by(|a, b| b.total_size.cmp(&a.total_size));
        stats.truncate(max_stacks);
        stats.shrink_to_fit();
        stats
    }
}

struct AtomicCountAndSize {
    /// Number of allocations.
    pub count: AtomicUsize,

    /// Number of bytes.
    pub size: AtomicUsize,
}

impl AtomicCountAndSize {
    pub const fn zero() -> Self {
        Self {
            count: AtomicUsize::new(0),
            size: AtomicUsize::new(0),
        }
    }

    fn load(&self) -> CountAndSize {
        CountAndSize {
            count: self.count.load(Relaxed).into(),
            size: self.size.load(Relaxed).into(),
        }
    }

    /// Add an allocation.
    fn add(&self, size: usize) {
        self.count.fetch_add(1, Relaxed);
        self.size.fetch_add(size, Relaxed);
    }

    /// Remove an allocation.
    fn sub(&self, size: usize) {
        self.count.fetch_sub(1, Relaxed);
        self.size.fetch_sub(size, Relaxed);
    }
}

#[derive(Debug, Clone, Copy)]
pub struct CountAndSize {
    pub count: Number,
    pub size: NumBytes,
}

struct Stats {
    live: AtomicCountAndSize,
    track_callstacks: AtomicBool,
    small: AtomicCountAndSize,
    medium: AtomicCountAndSize,
    large: AtomicCountAndSize,
}

impl Stats {
    const fn new() -> Self {
        Self {
            live: AtomicCountAndSize::zero(),
            small: AtomicCountAndSize::zero(),
            medium: AtomicCountAndSize::zero(),
            large: AtomicCountAndSize::zero(),
            track_callstacks: AtomicBool::new(false),
        }
    }
}

/// Number of bytes allocated via the global allocator.
/// Not all of these may be resident; the RSS value will
/// typically be different from this value.
pub fn counted_usage() -> usize {
    STATS.live.size.load(Relaxed)
}

pub fn set_tracking_callstacks(enable: bool) {
    STATS.track_callstacks.store(enable, Relaxed);
}

pub struct TrackingStats {
    pub small_threshold: NumBytes,
    pub live: CountAndSize,
    pub top_callstacks: Vec<CallstackStats>,
}

pub fn tracking_stats() -> TrackingStats {
    const MAX_STACKS: usize = 128;

    let mut top_callstacks = vec![];

    IN_TRACKER.with(|in_track| {
        if !in_track.get() {
            in_track.set(true);
            top_callstacks = BIG_TRACKER.lock().top_callstacks(MAX_STACKS);
            top_callstacks.append(&mut MEDIUM_TRACKER.lock().top_callstacks(MAX_STACKS));

            // Resolve symbols while we are in_track so that the allocations
            // made by this don't "pollute" the overall set of callstacks
            for stack in &mut top_callstacks {
                stack.bt.resolve();
            }

            in_track.set(false);
        }
    });

    TrackingStats {
        small_threshold: SMALL_SIZE.into(),
        live: STATS.live.load(),
        top_callstacks,
    }
}